KN ‘g4V) AHVHEIT HO3L

IR

NASA CONTRACTOR
REPORT

LOAN COPY: RETURN TO
AFWL (WLjL-2)
KIRTLAND AFB, N MeX

NASA CR-1177

INPUT ADMITTANCE AND REFLECTION
COEFFICIENT OF A CIRCULAR APERTURE
IN A GROUND PLANE COVERED BY A

HOMOGENEOUS DIELECTRIC OR PLASMA SLAB

by R. E. Van Doeren

Prepared by
OHIO STATE UNIVERSITY
Columbus, Ohio

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION « WASHINGTON, D. C. « SEPTEMBER 1968



TECH LIBRARY KAFB, NM

LU

0060300
NASA CR-11717

—
INPUT ADMITTANCE AND REFLECTION COEFFICIENT OF A
CIRCULAR APERTURE IN A GROUND PLANE COVERED
BY A HOMOGENEOUS DIELECTRIC OR PLASMA SLAB

—

P N

By R. E. Van Doeren _

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepar}under Grant No. NGR-36-008-048 by
OHIO STATE UNIV.ERSIT™Y
Columbus, Ohio
for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearlnghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151 — CFST! price $3.00






ABSTRACT

This report is concerned with the reflection coefficient and
admittance of a circular aperture in a ground plane radiating into
a dielectric slab medium lying directly on the ground plane. The
work relies heavily on previous efforts by Compton1 and Rudduck.®
Calculations are performed for lossless dielectric and lossy plasma
slabs. The admittance for lossless slabs is compared with the
experimental data of others.
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INPUT ADMITTANCE AND REFLECTION COEFFICIENT OF A
CIRCULAR APERTURE IN A GROUND PLANE COVERED
BY A HOMOGENEOUS DIELECTRIC OR PLASMA SLAB

I. INTRODUCTION

In this report an integral expression is found for the aperture
admittance of a circular aperture in a ground plane covered by a
homogeneous plasma or other dielectric slab. Interest in this research
arose from a need for understanding the effects of re-entry plasma on
circular-aperture antennas and for use in correlating reflectometer
data from actual re-entry flights with homogeneous plasma slab para-
meters.

The method of analysis is variational and is based heavily on
the original work by Compton1 and Rudduck.® The basic variational
assumption made in this case is that the functional form of the aperture
electric field is that of the dominant TE,;; mode for the aperture. Good
agreement is obtained with experimental results obtained by others for
nearly lossless Vycor (¢ = 3.76) slabs.

In Section II the admittance integral for the circular aperture
is derived. Section IIl discusses the problems involved in numerically
evaluating the integral and Section IV presents the numerical results
for lossless dielectric slabs and for lossy plasmas with electron
densities from zero to well-beyond plasma resonance. Section V
presents the conclusions and Appendix A the derivation of the plane
wave spectra for the circular aperture.

1I. DERIVATION OF THE ADMITTANCE
INTEGRAL FOR THE CIRCULAR
APERTURE

In this section the derivation of a stationary expression for the
admittance of an aperture in a ground plane is outlined. The procedure
is that of Compton! and Rudduck.® The expression found is based on a
stationary formula for the aperture admittance® and the simplifying
assumption is made that the functional form of the fields in the aperture
is that of the dominant mode for the aperture geometry. For the case
of the circular aperture, this dominant mode is the TEi1 mode.

The geometry of the problem is shown in Fig. 1.
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Fig. 1.

Geometry of the circular aperture

covered by a slab.

Space beyond the aperture plane is divided into two regions, as

shown in Fig. 2.

Fig. 2.
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The fields outside the aperture are expressed in terms of the
electric vector potential as follows:

E=-VXE
(1) ]
H= [V(V. F)+ X2 F]
J9 o
and
A A
(2) F=x2+yy .

k1,0 is the free space propagation constant in regions 1 or 0,
respectively. ® and ¥ satisfy the scalar Helmholtz equation"’ in the
two regions outside the aperture and can be expressed as Fourier
integrals in those regions as follows (subscripts identify the regions):

(00} o
-
-ik +ik s -k
B1(x,y, z) = > \g g‘[I@eJ ZIZ+R§eJ ZIZ]eJkXXeJYy
2 -
e -dky dky
0 o0
-jk + k -ik x -ik
ki
-0 - 'dkx dk
(3) ﬁ A
-jkzoz o IkxX -jkyy
Bo(x, v, z) = (2 )2 ‘g § Tge y dkxdky
-C0 =00
o (o0
Yolx,y,2) = — g S Ty e ~IKZ0% o - jhyx o - Jkyy dky dky -
L (2.1r)2 Yy

Application of the scalar Helmholtz equation to Eq. (3) gives the
following forms for kz; and kgze:

kzl

+ NKi? - (kx® + ky®)
(4)

kzo

+ Nko? - (ks + ky?)

3



It is important to note that satisfaction of the radiation condition
(the fields must approach zero as z — «) requires that Im(kyz;) < 0 and
Im (kzo) < 0 which necessitates choosing the sign of the square root
carefully. The time dependence exp(+jwt) is understood throughout.

The fields in both regions are found by applying Eq. (1) to
Eqg. (3) to get

w
(5) Exi(x,y, 2) = (Zm)? 55‘[ -jkzily e -ikz1z 4 jkzi Ry e+JkZIZ ]
00 - o - Jkxx -jkyy dkx dky
% oo
(6)  Eyilx,y,2) = (zm )z ‘S‘S‘ﬁkm Ig e K212 _ jiczy Ry e TIK217]
e cemikxx o-IKyY iy dky,
(M) Bty =) = ‘H’ jzl; ki (1 o-3k21% + Rg otk 7]

-~ 00 00

|y [Ty e 05212 4 Ry eFIKZ1ZY oIkt o=JkyY qiey ax

Jwpe
o0 QO
1 ki? - ky? -ikz12 +ik g1z
(8) Hyilx,y,2) = gg —2 [Iy e + Ry e v 2]
4 (2m)? J® Ko ¥ ¥
-0 -
kxk -3 - s s
_ .X v [Ige ikziz + Rg e"‘szlZ] e kaxe JkyY dkx dky
JW o
oo o0
(9) EXO(X’ v, z) = (2 )2 \Sﬂg -JkZO T\I/ e JkZOZ —JkXX Jkyy dkx dky ,
T
~ 00 +»00

(10) Eyolx,y, z)

-jkzoz -jkxx _k
S\ngzo Tge ” 27 e e TIYY diydky

-0 =00

(217)"
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2 k
11 .Y, = X Xk'y'
(11) Hxo(x,y Z) 2 'n')z 5 Y [ J® Mo Jw Ko jl

=00 =0

» o7 ik20% o-JlaX o -JKyY gicy dky

~k 2 _X
(12) Hyo(x’ y, z) = (2m )z SSI jo Mg Ty Jw o Te

-00 —00

ce-Jkzoz o-jkxx e'jkYY dky dky

In order to find the aperture magnetic field, (the electric field
is assumed), it is necessary to apply the boundary conditions on
tangential E and H at z = d and on tangential E at z = 0. This can be
accomplished by equating the integrands (spectra) of the tangential
components at z = 0 and z = d. The assumption of the electric fields
in the aperture allows use of the Fourier transform pair relations to
find the spectrum of the electric field at z = 0. At z = 0, we have
0 o0
S g £y e IRX o TIYY qi diy

r

Ex(x, VE 0) =
(2w)?
-0 -00
(13) y.
o0 0
— 1 -jkxx _-jkyy
Ey(x, y,0) = )2 S S\ f3 e e Y7 dky dky-
- 0 -00
and
[00] [e¢]
i fiy (ky, ky) = S. S‘ Ex(x,vy,0) e+kax e+JkYY dx dy
~00 -0
(14)
o0 (0]
f3(kx, ky) = S 5 Ey(x,y, 0) o 5% tikyY gy gy
L .
-0 ~00



Here, fy and fp are the spectra of the aperture field; these

spectra are evaluated in Appendix A for the case when the aperture fields
are those of the TE;; mode.

(15)

and

(16)

(17)

(18)

(19)

and

(20)

The boundary conditions at z = 0 require

jkzi(- Iy + Ry) = fy

jkz1 (I3 - R3) = {3
Application of the boundary condition at z = d gives
-jkz1 [I\I’ e dkz1d Ry e+jkzld] = - jkzo Ty e-Jkzod
jkz1[ I e—jkz1d - R3 e+jkzld] = jkgo Tz e—jkzod
(k12 - ky?) [13 e-ikz1d | R e+jkz1d]
- kyky [Ty e~kzid 4 Ry o Hikz1dy

= [ (l{o2 - kXZ) T@ - kaY T\l/] e—jkzod ,

(ki? - kyz)[IY e~ Jkz1d Ry e+.jkz1d]
- Tk [1g e Ikz1d 1 Rgetikz1d]

= [(ko® - ky)) Ty - kyxky Tg] e



The six linear equations can then be solved for Iy, Ry and Ig and
R3# by the method of determinants. The solution is clear cut except for
the case of a slab dielectric constant with no imaginary part. In this
instance, there exist zeros of the coefficient determinant for certain
values of (ky? + kyz) which correspond to surface wave modes excited
in the slab. Section III discusses the effects of these zeros.

The stationary admittance formula derived by Compton® and
which is basic to this analysis, is given below.

‘S‘S E(x,y,O) X E(x,y) . /z\dxdy

_ aperture
(21) Y = =3
S‘ 5 E(x,y,0) . go(x, y)dxdy
perture
and
(22) I(x,y) = H(x, y, 0)

+
s

Yn hn(x, y) y g‘ E(n, £,0) . en(n, £) dndf,

aperture

(=)
It
s

where E(x,y,0) and H(x, vy, 0) are the electric and magnetic fields in the
apertur_e, en(x, vy) and hn(x,y) are the transverse vector mode functions
suitable for the apertu?e geometry of interest, and Yp is the n-th mode
characteristic admittance of a waveguide with the same cross section as
the aperture.
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The aperture electric field is taken to be normalized and to be of
the dominant mode form; hence, the denominator of Eq. (2) is unity.
Because of the orthogonality of the vector mode functions, the numerator
simplifies to the following:

(23) Y = § S’ E(x,y,0) < H(x,y,0) . /z\dxdy .

aperture



Because tangential E is zero everywhere in the aperture plane
except over the aperture, it is valid to extend the integration over all
X,y space:

(24) Y = S‘ 51 E(x,y,0) X H(x,y,0) . /z\dxdy

=00 -0

A A
If there are both x and y components of E and H, Eq. (24)

becomes
[o0] (0.0}
(25) Y = S‘ S'[ Ex(x, vy, 0) Hy(X, y, 0) - EY(X, vy, 0) Hx(x, v, 0)] dxdy .
)

Parseval's theorem can be applied to the above formula to give
an equation for the admittance in terms of the spectra of the field
components;si.e o

o o

26) Y = 1 ‘S"S‘ [ ikz(I R )]*k_lz__kLZI + Ry) kka(I
( = 2o L -jkzi(ly - Ry Jopg (vt Ry)-35-> (12 +Re)
-00 —00
ki? - kx? kxky
- [k -R3)]* | ———— (I3+R3) - - Iy +R dkyxdk
[jkzi(Is - Ry)] I:pr‘o (Iz + Ra) pr‘o(\y v ) xdky

We now use Egs. (15) and (16) to express Ry in terms of Iy and
Rg in terms of Ig. The following form for Y results (fy and fg are real):

o0 00
(27) Y=—9 gg 2[(k12-kyz)f\l, +kxky f3] Iy - 2[(k12—kx2)f§+kxkyf\lf] I3
wol2m)?
-00 =00

1 2
+ om [f‘l’z(kl -kYZ) +f§2(k12“kx2) + 2 fy fe kx ky]} dky dky

The above integration can be reduced to one finite and one infinite
integral by the following change of variables:



o X
n= o B cosa
k
=_¥ = i
g Ko B sina
(28) dkxdky = ke* B dadp
ko = wNMo€o
ky = wNpg €
< kz]_
R o
kgo
P = Ko
p = X1 'j%
K, . ©°©
F\I’ = k.o f\I/
FQ = ko f§
e

When Egs. (28) and (29) are substituted into Eq. (27)s; the final
result for the admittance is

2T oo
(29) Y=Y, (ﬁ?) S 5 {z [F\y(pz-ﬁzsinza) + Fs Fizi sin za] Iy
0 0

2
-2 [F@(p2 -B%cos?a) + Fy EZ— sin ZCL] Iy

-] fli [F\ya(pz -B%sin? a) + Fg(p? - B2 cos® Q)+ FyFgP? sin 20]r gdp da,

and Y = '\Jeo7 fo is the characteristic admittance of free space.

For the case in which the medium beyond the aperture is semi-
infinite in extent, there will be no reflected waves in the medium and
Eqgs. (15) and (16), with Ry = 0 and Rg = 0, can be substituted into
Eq. (29) to obtain the following admittance integral for a semi-infinite
medium beyond the aperture:



2m

o0
(30) Y=Y, _‘J__) g S‘ A {(p? - B2 sin® Q) Fy? + (p? - B% cos? Q)Fg?
42 5 R

0 2
+ p% sin 2aFy Fg} g dpda

I1I. NUMERICAL EVALUATION OF
THE INTEGRAL

Integration of Eq. (29) is accomplished in a straightforward manner
except for the appearance of singularities (poles) of the integrand when
the slab dielectric constant is pure real. These poles correspond to
values of B for which surface-wave modes are excited in the slab.®

The poles are actually zeros of the determinant of the coefficients

of the set of simultaneous equations in Iy, I, Ry, Rg Ty, and Tg-

This determinant appears in the denominator of the solutions of Iy and

I3 and thus its zeros give rise to poles of the integrand. The occurrence
of these poles and the method of handling them for the lossless dielectric
slab are discussed in detail by Rudduck.® Although the problem Rudduck
considers is that of the rectangular aperture, the system of equations
for the scalar potential functions is identical to that for the circular
aperture and the pole locations and behavior are therefore the same also.

The coefficient determinant can be factored to get the denominator
in the solution for Iy and I3 in the following form:

(31) DEN= -jRP(jp% P2 cos RD - R sin RD){(j Psin RD + R cos RD) ,

where

N1 - B2 p? <1
L _jr\/;sz_l g2> 1

Vp® - g2 g < p?
-jNB*® - p? p2 > p? (p? positive real) ,
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€ =¢' +je' (relative slab permittivity).

The correct branches of P and R have been chosen to satisfy the
radiation condition. In the equation for R, p? has been taken positive
real in order to demonstrate the choice of the correct branch. For p?
negative real (2 = - |e 'I, as for a plasma), the following choice of R
must be made:

R=—j,lle'l+|32 .

As pointed out by Rudduck, the zeros of the denominator can be
related to either TE or TM modes, depending on which denominator
factor goes to zero. Reference to Collin’ allows identification of the
zeros of the two factors as corresponding to either odd TE or even
TM surface-wave modes. There are no poles for c £ 1. The two
equations which § must satisfy in order to have these zeros are

N .2 _ a2
(32) tan (217 % Np2 - 13?-) = - ;—f— (TE modes)

and

—% (TM modes)
pe - P

(33) tan (zn g NpZ - [32>

These equations are given by Rudduck® and are applied to the case
of the lossless dielectric slab. It can be shown for p? positive real,
poles can occur only for 1.0 <f < c. For such a case, the procedure
followed is to accurately locate the poles numerically and then to
numerically integrate very close up to, between, and beyond the poles
and then to use residue theory’ to account for a small clockwise
excursion taken around each pole. The same procedure is followed for
the TM plasma slab pole discussed later.

Figure 3 shows a sketch of the contour of integration used for the
lossless slab for the case in which there are two poles. For lossy slab
media, the poles move off the real B-axis and have a negative imaginary
part; the semi-circular excursion is therefore taken in the upper

11



half-plane to ensure continuity of the results as the slab changes from
lossy to lossless.

The value of the integral around the clockwise semi-circular
excursion is equal to (-jw) times the residue of the pole.

Im§B

0 ' —/R\

r—
0 1.0 /4

POLE LOCATIONS

O —4—

Re B‘——>

Fig. 3. Sketch of contour of integration
for a lossless slab.

As is evident from Egs. (32) and (33) a multiplicity of poles is
possible for the case of a lossless dielectric slab with a positive real
dielectric constant; for a negative real dielectric constant (e.g., for
a plasma) the situation is altered. In this case, only one pole,
corresponding to a TM surface-wave mode can exist and this pole can
be found anywhere from > 1toff —w .

For the case of a plasma slab, the effective dielectric constant
can be expressed as follows:’

w. 2 , w.?
(34) € = -—P ) - —FB— =e'tje",
w? + y? © wtiy?

where
w is 27 times the oscillation frequency (sec™?!) ,

v is the electron collision frequency (sec”!) ,

12



IJ_.'

W is the plasma collision frequency:

1
wp = (5.66 X 10%)(Ne)? (sec~!), and

Ne is the electron density in cm™3

Consideration of Eq. (34) makes it evident that the real part of
the effective plasma dielectric constant is always less than unity and
can become an arbitrarily large negative number as Ng becomes
arbitrarily large. At the plasma resonance ((-op2 = w? + v?), the real
part vanishes. The electron density which produces this condition is
often called the "cutoff'' concentration.

The pole locations for plasmas with ¢ > 1 are found bT taking

T =I'rr(e” = 0) and examining Eqs. (32) and (33) for p? = - 'e' and
e'| >1.

TE Surface Waves

d -
(35) tan (zwx NpZ - Bt ﬁa) - e : p-lsz

For p?‘ = - le'|, Eq. (35) becomes, after selection of the correct
branch for R = Np® - B%),

(36) tan (—j ng m) s JLe'f_Jrlpz

We can write the tangent of the pure imaginary quantity above as

follows:

. e-ZTrg Ilell+ ‘32 e+2ﬂ§ [e'l +ﬁ2
37 tan (-j 2w & '+2)=-' E :
(37) a (.] Tr)\\“6| B J ‘2'”%“"]"'?’2 +2“g‘“€'|+‘32

e + e

For le'l > 1, Eq. (37) gives a function which is negative imaginary for
all B and monotone decreasing with B; its lower bound is -j. The right
side of Eq. (36) is always positive imaginary for § > 1. Hence, there
are no solutions to Eq. (36) and no TE surface-wave modes are excited
for p% = - le", e} > 1.

13



TM Surface Waves

(38) tan (anm) _ piNBE -1

NpZ - BZ
For pz = - le |l: Eq. (38) becomes
(39) tan (—J 211'% I,e',+ﬁ2)=-j Iel'l" +‘ﬁﬁz_1
€

The previous discussion of the left side of Eq. (36) applies to the
left side of Eq. (39) also. For § > 1, the right side of Eq. (39) is
monotone decreasing with B; its lower bound is - j [e'|. Thus there is
a (single) solution to Eq. (39). Figure 4 shows a sketch of the behavior
of the two sides of Eq. (39) for § > 1.

+]
B=1.0
0.0 )I( -
' tan (—j2r— ./|€'|+ 2 )
| / Ao B
~ 1.0
_lélj__ \ ‘ leul /———Bz_l
-1

Viel+ 2
Fig. 4. Sketch showing the Tk pole location
for ,e '[ > 1.

In order to determine the possible range of values of 8 for this
pole, we can consider the case for 2m d/A sufficiently large that the
left side of Eqg. (39) is very nearly equal to (-j) for the entire range of
B . Then the pole location is determined by setting the right hand side
of Eq. (39) equal to (-j) and solving for . The resulting equation for

B is
14



(40) g

As !e'[ becomes larger, the pole moves closer to f = 1 and as
[e'[ approaches unity (say for e'[ only slightly larger than unity) the
value of B can be made arbitrarily large. Thus, the pole location can
extend from a value of B arbitrarily close to 1.0 to a value of B
arbitrarily large.

IVv. NUMERICAL RESULTS

Data were generated using the OSU IBM 7094 computer to evaluate
the admittance integral. Both lossless dielectric and lossy plasma slabs
were considered.

Lossless Slab Data

The first data calculated were for lossless Vycor glass slabs
(e = 3.76) for which considerable experimental admittance data have
been gathered by researchers at the NASA Research Center, Langley,
Virginia.m Table I gives the measured admittance and the admittance
calculated using the variational method described previously in this
report.

TABLE I
MEASURED AND CALCULATED ADMITTANCE
FOR 1.5" DIAMETER CIRCULAR APERTURE IN
Al2" X 12" GROUND PLANE COVERED BY A
0.515'" THICK LOSSLESS SLAB OF DIELECTRIC
CONSTANT, € =3.76

Frequency Measured Admittance Calculated Admittance
5.89 GHz 1.68 - j 0,57 1.76 - j 0.44
6.30 GHz 1.62 +j0.0 1.50 +j 0,001
7.31 GHz 1.60 +j 0.50 1.61 +j0.34
7.48 GHz 1.81 +3j1.03 1.65 +j0.94

The data were read from a graph and, where necessary, inter-
polation between adjacent points was used to find the suitable experi-
mental value. There is good agreement between the experimental and
the theoretical results. The same NASA researchers have measured

15



the free-space aperture admittance also; however, for the cases com-
pared, the conductance was in good agreement and the calculated
susceptance was approximately equal in magnitude to that measured
but of the opposite sign. This sign difference has not been resolved.
The generally good agreement with experiment is considered to sub-
stantiate the theory and, consequently, data were generated for other
dielectric and plasma parameters of interest.

Table IT shows the calculated aperture admittance at 10,044 GHz
of a 0.74" diameter circular aperture in a ground plane covered by a
lossless Teflon slab of several thicknesses.

TABLE II
CALCULATED APERTURE ADMITTANCE AND REFLECTION
COEFFICIENT OF A 0.74 INCH DIAMETER APERTURE
COVERED BY LOSSLESS TEFLON SLABS OF GIVEN
THICKNESSES AT A FREQUENCY OF 10.044 GHz

(incdhes) Admittance Reflection Coefficient
0.000 1.76 +j 0.12 -.277 - j .031; |.279] oJ-173.6°
0.100 2.57 +j 1.04 _.483 - j .150; |.506] I(-162:7°)
0.200 4.02 +j0.70 -.609 - j .055; |.612] J(-174.9°)
0.300 3.78 - j 0.60 -.588 +j .052; |.590] GJ175.0°
0.400 2.89 - j 0.53 -.495 +j .069; |.500] o 172-1°
0.500 2.67 +j 0.16 _.456 - j .024; |.456] J(-177-07)
0.600 3.34 4+ 0.51 _.546 - j .053; |.548] I1T447)
0.700 3.62 - j0.16 -.568 +j .153; |.568] & 178-5°
0.800 3.08 - j 0.34 _.513 +j .041; |.515] I 175:5°

o 3.16 +j 1.04 | .559] (J{-168-3°)

Figure 5 shows a Smith Chart plot of the Teflon slab data; the data
are plotted in impedance coordinates. It is interesting to note the
spiralling-in of the reflection coefficient to the half-space value.

16



CIRCULAR APERTURE |IMPEDANCE

APERTURE RADIUS 0.37"
LOSSLESS TEFLON LAYERS
FREQUENCY 10.044 GHz

(INCHES)

o ~N~NouodbhwNm -0

0.0 (FREE SPACE)
0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

@ (HALF~- SPACE)

Fig. 5. Smith Chart plot of aperture impedance of a 0.74 inch
diameter aperture covered by lossless teflon slab
layers of thickness d at a frequency of 10.044 GH=z.

17



-

Plasma Data

Admittance data were computed for aperture diameters of 0.74"
at 10.044 GHz and 2.21'"" at 3.348 GHz when covered by homogeneous
plasma slabs 0.197" and 0.788" thick and when radiating into a semi-
infinite plasma half-space. The data were calculated for electron
densities from zero to well beyond cutoff for a collision frequency
equal to 10® sec™?!.

Table III shows the tabulated reflection coefficient data for
3.348 GHz and the range of electron densities considered. Figure 6
shows a Smith Chart presentation of the aperture impedance and
reflection coefficient for the data presented in Table III.

Table IV gives the calculated reflection coefficient data for
10.044 GHz and the electron densities considered. Figure 7 is a
Smith Chart presentation of the data from Table IV.

It is observed that the reflection coefficient curves converge to
the minus unity value from the positive phase angle direction. This
direction of approach to (-1) is consistent with plane wave theory for
the homogeneous plasma medium. This can be seen if we write the
characteristic impedance of the plasma medium in terms of the propa-
gation constant in the plasma, kp. Neglecting the collision frequency
we find

g = Bo _ “lo _ “Ho
k_ T .1 1.7
P w,luo(-le ) —wao]e'f
and
z =] o .

Thus, it is clear that as Ne — = (i.e., as ]e" — w), z — 0 on the
positive reactance side of the Smith Chart. The correct branch for the
propagation constant was chosen (i.e., Im(kp) < 0) in order to satisfy
the radiation conditions.

18
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TABLE III
REFLECTION COEFFICIENT OF A 2.21" DIAMETER APERTURE IN A

GROUND PLANE COVERED BY A PLASMA SLAB OF THICKNESS d. 3.348 GHz
d=0,197" | da=0.788"" d=ow
Data Electron Mag., Arg. | Mag. | Arg. | Mag. ! Arg. Mag. Arg.
point density € € r ] r r r r r
(Fig. 6) | (cm™®) (rad.) (deg.) ' (deg.) (deg.)
0 0.0 1.0 0.000 | 0.291 |-173.9° | 0.291 {-173.9* | 0.291 |-173.9°
1 5X 100 0.638 | -0.003 | 0.286 | 153.5 | 0.296 | 120.9 0.178 | 148.8
2 8X 10 | 0.420 | -0.007 ' 0.473 | 108.4° | 0.401 | 88.9
3 1,0X 10 | 0,275} =0.013 | 0.327 | 128.2 E 0.615 | 109.0 | 0.674 93.7
4 1.2X 10" | 0.130 | -0.032 20.764 113,0 0.900 | 107.0
5 1.3X 10H 0.058 | -0.077 | 0.497 | 108.9 g 0.968 | 114.,1
6 1,6x 101 0.160 | -3.107 | 0.720 | 131.1 1.0 129.1
7 2.0x 10M 0.449 | -3.,126 | 0.780 | 140.8 | 0.973 | 138.7 1.0 138,4
8 8,0X 10 | 4,79 |-3,136 | 0.903 | 157.2 | 0.986 | 161.5 1.0 161.8
9 1.,5% 1012 9.87 |-3.136 }0.973 | 164.7 ]0.994 | 167.0 1.0 167.0
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TABLE IV
REFLECTION COEFFICIENT OF A 0.74" APERTURE IN A

GROUND PLANE COVERED BY A PLASMA SLAB OF THICKNESS d. 10,044 GHz
d=0.197" d=0,788" d=ow
Data Electron Mag. Arg.| Mag. Arg. | Mag. Arg. Mag. Arg.
point density € € r r T T r r
(Fig. 7) (cm™3) (rad.) (deg.) (deg.) (deg.)
0 0.0 1.0 0.0 0.279 | -173.6° | 0.279 {-173.6° 0.279 |-173.6°
1 5.0X 10 0.597 | -0.001 0,306 123.3 0.189 107.4 0,206 110.0
2 8.0Xx 10! 0.581 81.6 0,531 87.2
3 1,0X 1012 0.195 | -0.007 0.616#1 110,0 | 0.859 100.3 0.811 98,3
|
4 1.2X 1012 0,034 | -0,045 | 0.810 114.7 0.977 115,4 0.987 114.5
5 2.0% 10%2 0.610 | -3.137 ¢ 0.9% 140.6 1.0 140.7
6 5,0X 1012 0,992 157.4 1.0 157.4
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V. CONCLUSIONS

The derivation of the variational solution for the admittance of an
aperture in a ground plane covered by a homogeneous dielectric slab is
reviewed. The formulation is extended to consideration of the circular
aperture.

Numerical integration of the variational integral is discussed and
the effects of poles of the integrand are considered. Admittance
calculations were performed for lossless dielectric media and for
plasma layers. Good agreement with experimental data obtained by
others was found for the lossless dielectric calculations and the cal-
culated plasma slab data were found to be generally consistent with
expectations based on plane-wave reflection.
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APPENDIX A
PLANE WAVE SPECTRUM FOR THE
TE;n CIRCULAR APERTURE

This derivation follows the steps outlined by Silver!'! in his

derivation of the radiation field of the circular aperture.

The geometry is shown in Fig. 8.

Fig. 8. Circular aperture geometry.

For the TEj;; mode in the aperture, the electric scalar potential
is given by

(41) ¥ = N Ji(kpp) cos g e I522

N is a normalization constant such that the denominator integral of
Eq. (21) is equal to unity; i.e.,

S S‘ E(x,y,0). go(x, y) dxdy =1
aperture
The electric vector potential is

(42) F=%2vy

24



(43) E=-VXF

At z = 0,

E. =N Ji(kpp)

p > sin Y
(44) 4
Ey = Nkp Ji'(kpp) cos ¢
and
Ex = Ep cos { - Ey sin ¢
(45)
Ey= Ep sin{ + Ey cos §y .
Then
[ Ti(k
EX =N _I(E_p_p_)_ sin 4»‘ coOSs LIJ - N kp J]_I(kpp) CcCOS Lp S'I.an
(46) 3
Ji(k
L EY = N I—L&p-) sin?y + N kp Ji'(kpp) cos?y ,
but
\ _ 1
Ji'(2) = - = Jil2) + Jo(z)
1 1
7z Juz) = 5 [T (2) + To(2)] .
Thus
kp .
Ex = N_Z— Jz(kpp) sin 2y
(47) 3 '
Ey = N £ [Jo(kpp) - J2(kpp) cos 2¢] .

25



The Fourier transforms of Ex and Ey are defined as follows:

©o o0

fy = 5 § Ex(x, y, 0) % Y ax ay
-0 =00
(48) o o
. e
tp = ‘Sﬂ Sv Ey(x,y,0) ekax VY ax dy .
- 00 ..oo

By making a change of variables as shown below, the transform
can be written in cylindrical coordinates;

p cos ky = k cos ¢ k = kg sin®

]
It

(49)

p sin ky = k sin ¢

«
I

The geometrical interpretation of this change of variables is shown
in Fig. 9.

Ne

y

Fig. 9. Geometrical interpretation of the
change of variables.
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The integral transforms become

i a 2w
S’ Ex(p, ¥) ejkp[coscl: cosy + siné siny] od pd
(50) < 0 °
w
S‘a S‘ Ey(p, ¥ ej_kp[cosqa cosy + sind siny] od pdi
0 O

Substituting the assumed TE;; field in the integrals and simplifying
the trigonometric details of the exponent, we find

f‘

a 2T
- )
0
(51) L 0 2m .
k jk,p sinBcos(d-U)
fg = N— g f[:ro(kpp) - Ja(kpp) cos 2] &P P Wodpay .
0 0

In order to reduce the equations above, we need the relations
given below.

The Fourier-Bessel Series

(52) P o0t gty v ) 2() TR cos mle-y)
m=1
The Lommel Integral Formula
X .
x d d
(53) S‘ x Jplox) Jn(Bx)dx = — [Jn(ax) G In(Bx) - In(px) g};Jn(OLX)]
o o"-p

When Eq. (52) is substituted into Eq. (51), a series of integrals
over 27 of (sin 2y cosmy) and (sin 2y sinny) result. The orthogonality
properties of the sine and cosine functions eliminate consideration of
any terms other than m = 0 and m = 2 in the Fourier-Bessel series. The
resultig

27



. a 2w
k
(54) f N_ZE_ S\ 5‘ 2 Ja(kpp) Jz(kop sin®) sin 2y cos 2($-) pd pdis
0 0
and
a 2w
kp .
(55) fp = N>~ S. 5 [Jo(kpp) Jolkyp sin )
0 0
+ 2 J2(kpp) J2(kop sinB) cos 2y cos 2(¢p-) | pd pdys
Completion of the integration over { gives
a
(56) fg = - Nkpmw ( sin 2¢ Ja(kpp) Jz(kop sin®) pdp
0
and
(57) fg =Nmk, S‘[Jo(kpp).]'o(kop sin6)

0
+ cos 2¢ Ja(kpp) Ja(kop sin®)] pdp .

Application of the Lommel integral formula (Eq. (53)) gives as the
final result for the transform of the TE;; aperture fields

N—-rrkpa sin 2¢ kysin® Ja(kpa) J2'(kpa sin©)
(58) fy =
¥ ko?-ko?sin?0 | - kp Ja(koasin®) Jp'(kpa)
and
kg sineJo(kpa) Jo'{koasin®)
Tkpa - kg Jo(koasine)Jo'(kpa)
(59) fg= N
ko?-ko®sin?0 + cos 20[ kg sin 6 Ja(kpa) Jz'(kpa sin 6)
- kp J2(Kpa sin 8) Jz'(kpa)] .

For the TE;; mode, the normalization constant is given by
Harrington4 as
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2 1
60 . = 1,256 .
e " Jn[(1.341)2-1] Ty(1.841) *

After putting J2' and Jé; in terms of J; and Jo, the final result for
the plane-wave spectrum of the circular aperture is obtained, letting

s
Azko.A.

F\If :kOf\}_f

(61) 4 Fg=ko {3

a =
= 1 [S] ,
! B sin A i
A sin2a 10.993 - (1.621)A%p*
(62) Fy = . J1(A]
N4 (3.3899 - AZBZ) 4 AB 1{AB) »
L - (5.496) J,(AB) y
and s -
(5.496)(1 +cos 20) Jo(AB)
(63) Fg = A )
(3.3899 - AZ@) ] - [(1 - cos 2a)(1.621)AB 4
(5.496)cos 20 .
\ B A2 ] J1(AB) )

NASA-Langley, 1968 —— 25 CR-1177 29
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